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1. INTRODUCTION 

This is the Third Quarterly Progress  Report covering work per -  

formed by TRW Systems under Contract NAS 5-9178, ‘‘Study and Analysis 

of Satellite Power Systems Configurations for Maximum Utilization of 

Power.” This report  covers the period 19 November 1965 through 

18 February 1966. The study consists of six major  tasks:  

Task I. 

Task 11. 

Task 111. 

Task IV. 

Task V. 

Task VI. 

A survey of the power requirements of spaceborne equip- 
ment in typical unmanned satellites. 

A survey of typical spacecraft e lectr ical  power system 
de signs. 

Collection and presentation of parametr ic  data on the 
individual assemblies constituting a power system; 
(i. e. , power control, energy storage,  and power 
conditioning equipment). 

Analysis of three typical space missions,  selected by 
GSFC, with respect to their  e lectr ical  power require- 
ments and to the character is t ics  of photovoltaic power 
systems which could meet  those requirements. 
power system configurations will be evaluated with 
respect to efficiency, weight, reliability, and interface 
constraints . 

Various 

Investigation of possible means of standardizing 
electrical  power requirements for satell i tes as well as 
design of power systems and their equipments. 

Investigation of the character is t ics  of alternate 
e lectr ical  power systems using radioisotope thermo- 
electr ic  generators (RTG) rather  than photovoltaic 
s our c e s . 

The resu l t s  of the first four tasks a r e  to be used to  establish a n  

evaluation technique o r  method which will allow various proposed power 

system designs to  be evaluated for optimization. 

technique is to be demonstrated on the designs for the three missions 

specified by GSFC. 

maximum utilization of power should allow recommendations to be made 

for  standardization of satellite power systems , requirements , and 

equipments. 

Application of this 

The identification of power systems optimized for  

1 



2. PRESENT STATUS OF THE STUDY 

A t  the conclusion of the third quarter ,  the planned program was 

approximately 70 percent complete. To date, the major  portion of the 

effort has been devoted to the first  four tasks. 

work scheduled under each task is as follows: 

The present status of the 

Task I. Complete - All available additional data regarding 
experiment power requirements has been obtained. 

Task 11. Complete - Results presented in second quarterly report. 

Task III. Complete - Major portion of the resul ts  presented in 
second quarterly report;  the balance of the effort to date 
is reported here. 

Task IV. Approximately 30 percent complete - A method of 
optimization evaluation has been synthesized and is 
described in this report. 
missions wi l l  be completed during the fourth quarter.  

The analysis of the specified 

Task V. Approximately 10 percent complete - General standard- 
ization guidelines have evolved from the work performed 
in Tasks I - IV. These guidelines wil l  be formalized and 
expanded during the fourth quarter. 

Major emphasis wi l l  be placed on completing Tasks IV and V during 

the fourth quarter.  

developed under Task IV wi l l  be assessed  for applicability to the RTG 

system design effort of Task VI. 

The "Comparative Analysis Optimization" technique 

Figure I is a revised program schedule 

updated to reflect the present status of the study. 

2 



Figure 1 .  Revised Program Schedule 
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3 .  THIRD QUARTER STUDY RESULTS 

3 . 1  PARAMETRIC DATA 

The converter parametric data presented in the Second Quarterly 

Report have been expanded s o  that the efficiency and weight performance 

of the individual sections, Le. , the pre-regulator,  inverter,  and t rans-  

former-rectifier (TR), can be identified separately.  This will allow trade-  

offs to be made between a single converter which provides the functions 

of a regulator, inverter ,  and TR units, and discrete  equipment, such as a 
regulator , inverter ,  and TR units. 

The various types of regulators and their parametric data (described 

in the Second Quarterly Report) have been reviewed for the specific 

application of battery charge or  discharge control. 

fundamentally the same as before except limit control functions have been 

added for proper battery protection. The charge and discharge voltage, 

temperature,  and current limits a r e  determined for each type of battery 

from the parametric data. 

The regulators a r e  

Several questions have arisen concerning the dc to dc converter 

parametric data presented in Figure 29,  page 57,  of the Second Quarterly 

Report. 

power, frequency, weight, and efficiency of existing dc to dc converter 

hardware were compared with the data presented in Figure 29.  Table I 
lists the design c r i te r ia  f rom which the curves in Figure 2 9  were derived. 

The existing hardware designs were adjusted to the same cr i te r ia  by using 

the efficiency correction factor presented in Figure 31 of the Second Quar- 

t e r ly  Report. 

and 31, respectively, of the Second Quarterly Report. 

To clarify the usefulness and applicability of these data, the 

Exhibits 1 and 2 of this report a r e  reproductions of Figure 29  

4 
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Table I. De 

Converter Type: 

Input Voltage : 

Single Output Voltage : 

Ripple and Noise: 

Overload Protection: 

Temperature:  

Redundancy : 

sign Cri ter ia  

Pre-regulator dc to dc 

28 f 15% vdc 

28 f 270 vdc 

f i% 
Cur rent limiting 

0-50°C 

None 

The information presented in Figure 29 was intended to show the 

change in direction and relative magnitude of the various parameters .  

It i s  expected that these parameters will vary somewhat because of the 

many variables affecting the designs. 

lower power levels. 

is practically non-exis tent, a comparison of the data extrapolation cannot 

readily be verified at this time. 

hardware data points with the curves in Figure 29. 

The data compare favorably at the 

Because high power level hardware (200 to 500 w) 

Table I1 presents a comparison of the 

3 .  1. 1 Derivation of Converter Parametr ic  Data 

The general equation for the converter efficiency parameter  

shown in Figure 29  is: 
D 

where 
Po = Power output 

= 

(Pf). = 

(P ) = Semiconductor component losses  

(Pm)o = Magnetic component losses 

Converter efficiency at  given (P  ) and (f ) 

Fixed losses a t  a given power output 

qo 0 0 

s o  

Converter efficiency (rll) at a given (Po) and a new ( f l )  is: 

1 

Tl 
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Table I I .  Comparison of Parametric Data and Hardware Designs 

CONVERTER 
DESIGN 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

OUTPUT VOLTAGE 

+28, +15, -28 VdC 

+L.2 vdc 

+L.2 vdc 

+U.6, 6 . 6 ,  -3.6, 
-6.0, +15, -15 VdC 

+12.8, +16.7, +16.0, 

-16.0, +10 vdc; 1 5  vi 

-940, -545, +80 vdc; 
4.875 vac 

+10.0, +15, -12.4, 

+6.5, -6.65 VdC 

+16, +lo, -6.2, 
-16.1 vdc 

+28, +12.2, +lo, 
-6.2 vdc 

+Z3, +70 vdc 

+23, +70 vdc 

POW 
CTUAL 

34.64 

15 

5 

- 

2.75 

9.00 

26 

13 99 

21.60 

1.91 

3.69 

26 

22.1 

- 

(w> 
GRAPH 

35 

15 

5 

2.75 

9.0 

26 

14 

21.6 

1.91 

3.69 

26 

22.1 

- 

EFFI( 
ACTUAI 
- 

78 

77.5 
68 

71  * 
63 

57.2 
55 

68.5 
66.4 

78.5 
80 

7 1  * 
66 

75.5. 
74 

36 * 
34 

42* 
40 

70 

64 

- 

79.5 

76 

62 

55 

72 

78.5 

76 

77 

52 

57 

79 

78 

- 

FREQUE 
ACTUAL 

10 

10 

10 

10 

6.5 

6.5 

3.3 

3.3 

3.3 

3.3 

2.4 

2.4 

Y (KC) 
m m  

10 

10 

10 

10 

6.5 

6.5 

3.3 

3.3 

3.3 

3.3 

2.4 

2.4 

- 

WEIG 
ACTUAL 
- 

3 -0 

1-45 

1.10 

1.45 

3.2 

2-35 

3 00 

2.8 

0.6 

1.1 

2.2 

2.2 

2.8 

1.5c 

0.93 

0.8 

1.3 

2.5 

1.7 

2.2 

0.84 

1.0 

2.8 

2.j  

NOTE: * - Efficiency corrected f o r  +28 vdc s ingle  output 
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1 - 

q 1 -  j E . 6 t O . 1 5 g )  t 0 . 2 5 k ) 0 . 1 ]  

wo = xo t Yo t zo 

where 

W 

X = W / 3  = weight of electronic components 

= converter weight for  output of (Po) at (f ) 
0 0 

0 0 

= W / 3  = weight of magnetic components 

= (Xo t Yo) /2  = weight of chassis  and misscellaneous 
0 

Z 
0 hardwar e 

The new converter weight (W1) for output of (P 0 ) at ( f l )  is: 

0.4 0.4 

w1 = xo t Yo ($) t 1 / 2  

0.4 
- 

w1 - 2 

(3) 

The equation relating weight to output power a t  a constant frequency 

is 

The factor (K) var ies  with frequency and the Wo used. Table 111 
provides the approximate values for  K in  the a r e a  of interest. 

The c ros s  plots of weight vs power output and frequency vs power 

output a r e  shown in Figure 2 for the same design centers  used in Figure 29. 
The curves of Figure 3 relate the variation of the fixed losses  (Pf), with 

output power and the resulting efficiency (qo) given by Equation (1). 
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Table Ill. K Factors versus Switching Frequency for Converters 

.06 

03 

1.0 

3 00 

10.0 

20.0 

30.0 

200.0 

P 1 >  low; P0=1OW 

K 

645 

.666 

.676 

,670 

,700 

715 

745 

---- 

P1 < low; Po=lW 

K1 

-46 

.40 

40 

935 

030 

.26 

255 

.270 

1.8 

1.2 

0.82 

0.67 

0.6 

0.55 

0.5 

0.35 
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Figure 2.  Design Center Parameters for Converters > 6 8  
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Figure 3. Design Center Efficiencies for Converters 
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The complete curves of Figure 29  were generated by taking the p e r -  

formance data of an existing converter a s  a design center .  

design center,  the variation of efficiency (‘lo) and weight (Wo) at a constant 

power were extrapolated using the relationships given by Figures  2 and 3. 

Other design centers were similarly used for different power outputs. 

From this 

When the inverter function provided by a converter is considered as 

a separate piece of equipment, similar equations resul t  such as  the following: 

0.4 

w . = -  
J 3  

(7)  

The composite parametric curves  for inverter designs, shown in 

Figure 4,  were generated from design centers  as were the converter data. 

Figure 5 provides the design center parameters  used in conjunction with 

Equations ( 7 )  and (8) to generate Figure 4. 

The t ransformer -rectifier (TR) function of the converter can a l so  

The following equations re la te  effi- be considered as a separate entity. 

ciency (qh) , weight (W,) and operating frequency (fh). 

(10) 
1 - 

‘h - . l 

1 t [L “‘n - l] k. 6 t 0.0667[?) t 0.333 ($[ ] 
Figures  6 and 7 present the parametric design curves and design center 

parameters  for  the TR designs. ,  

11 



POWER (VA) 

Figure 4. Unregulated Square Wave Output, inverters 

POWER (VA) 

Figure 5 .  Design Center Parameters for inverters 
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Figure 6. Data for TR Units 

POWER (WATTS) 

Figure 7. Design Center Efficiencies for TR Units 
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3 . 2  ANALYSIS O F  LOADS 

Previously, specific loads were related to major  subsystems. 

order  to identify the more  significant load parameters  affecting the opti- 

mization c r i te r ia ,  an analysis of the parametr ic  data was necessary.  

Scatter diagrams,  based on flight hardware designs,  were made for output 

power vs efficiency, output voltage vs efficiency, output voltage regulation 

vs efficiency, etc.  

had the more  significant effect upon efficiency and weight. A review of the 

parametr ic  design data shows that system efficiency has the following 

functional relationship with power: 

In 

It was determined that both output power and voltage 

~ = f  [ b ( l - e  -k4)a1 

where 

T-, = total efficiency of power system l e s s  pr ime energy 
generator and storage 

Ai = percentage of total output power per output circuit .  

a ,  b ,  k = constants fo r  the particular type of conditioning equip- 
ment and operating voltages. 

A t  a constant power output, system efficiency increases  with an 

increase in  output voltage, 

the regulator input-output voltages differs significantly from unity. 

relationship of system efficiency to output voltage is also exponential, but 
much shallower than for  power output. 

of voltage outputs affect efficiency, but a r e  noticeable only when the out- 

put power and voltages a r e  held constant. Although trends can be shown 

for these parameters ,  the available data sample is too smal l  to establish 

accurate magnitudes for tradeoff purposes. Engineering judgement will 
be necessary in applying the trends as guidelines for these parameters  

in the few cases  affected. 

This increase will be modified if the rat io  of 

The 

Percent  regulation a d  thc nurr,ber 

Equipment weights are  similiarly related to output power and voltage 

for  conventional designs. 

special cases  where efficiency, lifetime, and reliability can be sacrificed. 

These special  cases  a r e  not included in this study. 

Extremely low weight designs a r e  possible in 

14 



The proportional increase of weight with output power is offset by 

the simultaneous increase i n  efficiency. 

weight and efficiency at any given power level. 

3 . 3  MISSION SELECTION 

Thus, it is possible to trade off 

The three missions specified by NASA/GSFC a r e  typical for existing 

and future ear th  orbiting vehicles. 

be analyzed by the optimization method developed in this study for maximizing 

the utilization of electric power. 

in later sections of this report .  

Table IV. 

Each mission and its constraints will 

A description of this method is included 

The specified missions a r e  listed in  

Orbit 

Mission 

A1 ti tude 

Life 

Control 
system 

Load power 

Subsystem 
power 
inventory 

Table IV. Selected Missions 

Mission I 

Synchronous 
equatorial 

Communi cations 

19,000 nmi 

5 years  

Active 3 -  and/or 
2- axis 

150 - 500 w 

As signed by 
T R W  

Mission I1 

Sun synchronous 

Mapping, Naviga- 
tion 

600 mi 

1 - 3 years  

As  necessary 

150 - 500 w 

Assigned by T R W  

Mission 111 

Elliptical, 31 deg 
inclined 

Scientific experiments 

200 to 180,000 nmi 

1 year  

3-axis 

300 w 

Assigned by T R W  

15 



3.4 LOAD SELECTION 

Space vehicle electrical  loads a r e  characterist ic for a given vehicle 

and mission. 

communications type satellite are  predominately functions of the require - 
ments oi the transmitters and receivers. 

Tasks I and I1 reveal that communications equipment requires  a wide 

range of dc voltages ( 3  to 1500 v),  with relatively close regulation. 

Significant amounts of power are required for each R F  output stage 

depending upon the range, data rate,  antenna gain, and output frequency. 

Multiples of this power can result i f  redundant equipment is used o r  i f  

more  t ransmit ters  a r e  required for  broader coverage of the frequency 

spectrum. 

the characterist ics of the electrical power system required to satisfy a 
given type of satellite mission, Specific power system requirements can 

only be defined when the vehicle design, mission constraints, subsystem 

inventory, ephemerides, and mission philosophy a r e  enumerated. 

For  example, the electrical  loads and duty cycles of a 

The load data accumulated in  

Thus, i t  i s  possible to make some general observations about 

The loads selected for the three specified missions (Table IV) were 

derived f rom existing satellite designs. 

ments  were increased to satisfy the specified total power by proportioning 

the increase among those subsystems primarily associated with the mis-  

sion function. For  the case of the communications mission, approximately 

85 percent of the increase in power can be associated with the t ransmit ters  

and receivers.  

housekeeping type sub systems. 

The subsystem power require- 

The remaining 15-percent increase is associated with the 

- i ab ie  V is a summary of the eieciricai  load requireltieiiis for 

Mission 111. 
ments  will  be used in the following sections to demonstrate the "optimiza- 

tion method" developed for this study. Maximizing system efficiency will 

The nominal total bus power is 300 w. This set of require- 

be the cr i ter ia  for  this example. 

Certain generalizations can be made about the method of maximizing 

The following is a list power system efficiency from the parametric data. 

of the more  important rules bearing on load selection and grouping: 

16 
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Power requirements should be grouped in large 
blocks for processing by regulators, inverters,  
converter s and/ or t rans  forme r - rectifiers . 
Power conditioning and control equipment should be 
used only when necessary for any increment of power. 

Efficiencies of power conditioning and control equip- 
ment generally decrease in  the following order  for 
constant power outputs: TR units, inverters ,  
regulators, and converters. 

Efficiencies of power conditioning and control equip- 
ment generally increase as power output increases ,  
output voltage increases,  voltage regulation per- 
centage increases,  number of output voltages 
decrease,  the r a t i o  of input/output voltage for 
regulators approaches unity, and a s  the input 
voltage r egulation per centage de c rease  s. 

Efficiency of the battery is only dependent upon 
state of charge, charge rate,  discharge rate ,  charge 
tempe ratur e,  and discharge temperature. 

Operating efficiency of the solar a r ray  is dependent 
only upon initial solar cell efficiency, illumination 
intensity , radiation his tory , temperature , and 
matched load impedance. 

The power required from the battery, especially 
that requiring conditioning, should be minimized. 

These general guidelines suggest specific groupings of the load 

power requirements for any spacecraft. 

of the analysis of the Mission-I11 loads, and formed the basis for the 

recommended grouping. 

is a s  follows: 

Table VI describes the results 

The process by which Table VI was  developed 

(1) All  output voltages were listed i n  descending order  
and numbered sequentially starting with 1. 
sequential column is labeled A. 

The 

(2)  Column B, adjacent to column A, was formed by 
assigning numbers according to the power output 
i n  descending order,  starting with 1. 

( 3 )  The output power at each voltage (taken from Table V) 
was multiplied by that voltage. According to the 
descending order of magnitude of the product (P x V ) ,  
numbers were assigned sequentially and listed in 
Column C. 

18 
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The assigned numbers f rom columns A, B, and C 
were summed for each voltage and listed in the 
column labeled (C,A, B, C).  Adjacent to this column, 
column D was formed by assigning numbers sequen- 
tially, start ing with 1 ,  according to the magnitude of 
the above sum ( G A ,  B, C )  i n  ascending order  (i. e., 
1 represents the lowest sum). 

Column E, adjacent to column D, was formed by 
calculating in sequence the cumulative percentage of 
the total system power for  each voltage listed. The 
sequence should parallel  the order  given in column A. 

Column F, adjacent to column E, was formed by 
calculating in sequence the cumulative percentage of 
the total system power for each power output. 
sequence for calculating should parallel  the numeri- 
ca l  order  given by column B, but is recorded opposite 
the correct  voltage. 

The 

Column G, adjacent to column F, was formed by cal-  
culating in sequence the cumulative percentage of the 
total system power for  each output. 
for  calculating should be i n  the numerical o rder  given 
by column C,  but recorded opposite the co r rec t  
voltage. 

The sequence 

Column H was formed by again calculating the cumu- 
lative percentage of total system power but follows 
the numerical sequence given by column D. 

All output voltages were arranged in  descending order  
of their  percentage regulation. 
having the same regulation percentage the output 
voltages should be arranged in  descending order  of 
voltage. 
with i for the 'nighest percentage regulatinni 
I, adjacent to column H, was formed by listing the 
sequential number determined above opposite the 
correct  voltage. 

Within each group 

This list was numbered sequentially start ing 
Column 

The sequence of column A reflects the preference fo r  grouping the 

outputs according to  the higher voltage. 

this preference according to power output. The voltage-power product 

preference of column C assists in  the decision if  columns A and B con- 

flict. 

additional information since it represents  the s u m  of the preference fac tors .  

Because power has the larger  influence on maximizing efficiency, it should 

be the pr imary consideration. 

In column B, the sequence shows 

Column D normally would not be required,  but it does provide 

2 0  



I. Since the f i r s t  two voltages (135, 125 vac) represent  52.8 percent 

of the total power, they should obviously be conditioned by the same piece 

of equipment. 

ponents of a two-phase output, finalizes the decision. 

voltages 

preference order  is not clear cut between them. 

voltage i s  400-cps ac  and can easily be combined with the first two in the 

same equipment. The fourth voltage ( t 7 0  vdc) would require the addition 

of rectifiers and f i l ters  to this equipment if it were included, but it would 

significantly increase this equipment's portion (70. 86 percent) of the total 

power. 

ment should be used with 135, 125, and 115 vac equipments comprising 

one package and with the t 70  vdc incorporated in the second package along 

with the remainder of the voltages, two equipments would resul t ,  having 

approximately an equal percentage of the total power. 

An additional consideration, the fact that they a r e  the com- 

The third and fourth 

(I 15 vac, 70 vdc) have the next highest preference, but the 

However, the third 

Alternately, i f  it is assumed that two pieces of conditioning equip- 

21 



The decision is not clear cut; however, the llComparative Analysis 

Optimization11 part  of this method (Section 3 . 6 )  permits a decision to be 

made between these two proposed designs on a relative basis. 

The preference indicated by the degree of voltage regulation 

Columns J and K,  which show the division (column I) is not decisive. 

of a c  and dc power, indicate a possible third design configuration involv- 

ing a regulated inverter and a regulated converter. Again, this proposed 

design can be compared on a relative basis with either of the previous 

two designs. 

figurations may be postulated, 

another configuration. 

In a similar manner, any number of alternate design con- 

Each, in turn, can be evaluated against 

3.5 SYSTEM CONFIGURATION 

The magnitude and trends established by the parametr ic  design 

data have been shown to predominately influence the load division. 

ther,  it is possible to formulate design optimization guidelines for each 

of the major equipments making up a power system design. 

guidelines in conjunction with the mission constraints, an  idealized de - 
sign for each of the major equipments can be formulated. These ideal 

designs would establish the maximum individual performance capability 

for each equipment when used for the specified mission. 

F u r -  

Using these 

Figure 8 is an  information flow diagram depicting the total optimiza- 

tion process. Starting from the left, the specified mission requirements 

and constraints are factored intc the idealized equipment designs and 

power requirement organization (Tables V and VI). 

optimization Data provides the means for modifying the idealized design 

and minimizing the loss i n  performance. The integrated result  is a set 

of Design Optimization Guidelines for each major equipment which allows 

the rational combination of these equipments into a power system. 

The Paramet r ic  Sub- 

. 

Because the guidelines are  not absolute, several  desirable combina - 
tions may be synthesized. A t  this point, a technique such as the Compara- 

tive Analysis Optimization Method is  required to evaluate the several  sys - 
t em designs in  light of the established optimization cri teria.  

parative Analysis Optimization process can be reiterated for as many 

proposed designs as necessary. 

The Com- 
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The generalized power system block diagram shown in Figure 9 

represents all possible power system configurations. To f i t  a specific 

o r  proposed system into this diagram requires that efficiency (q) num- 

bers  representative of the system equipments be placed in  the appropri-  

ate blocks. 

considered as 100 percent. 

be accurate in a relative sense when two proposed designs a r e  being 

evaluated by the Comparative Analysis Optimization Method. 

All other blocks not required in the proposed system are 

The assigned efficiency numbers need only 
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3 . 6  COMPARATIVE ANALYSIS OPTIMIZATION 

Under a given set of conditions the total input power (Pin) to the 

system from an energy source ( see  Figure 9) is 

where 

PA = maximum available power f rom the energy 
source element under optimum mission 
conditions 

qA = efficiency associated with the energy source 
for a given set of operating conditions. 

Energy source controls can be either s e r i e s  o r  parallel  in nature. 

efficiency associated with these controls i s  designated by (q ) or  ( 

F r o m  the regulated o r  controlled source the total input power (Pin) to the 

system is 

The 

s %'* 

o r  

Similarly, the efficiencies associated with each piece of equipment can be 

multiplied by the input power to that equipment. The total power to  the 

loads is then obtained by proper summation of the input power elements 

which have been decreased by their related efficiency factors. F o r  the 

solar array-battery type system, the division of energy proportioned 

to the discharge-charge (dark to light) ratio must  be considered. 

total power to the loads can also be expressed as follows 

The 

P = Pi = Pout Ai 
1= out i=l  

where 

Pi = the output power associated with each equipment 
just prior to  the load 

Ai = percent of the total power output associated with 
the equipment carrying the P. amount of power. 

1 
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The element of regulated source power associated with a P. is: 1 

During sunlight 

qs3y qs4 are the efficiencies related to the equipments 
P3 

where q 
conditioning the Pi power. 

During dark 

(.in) dark i=l (qp3qs 3q ~ 4 ~ s  5qB s 6qi) 

During sunlight 

where (T) is the total orbit time and (t) is the sunlight time of the orbit. 

The total maximum available power from the energy source under 
optimum mission conditions is 

L J 

This equation can be separated into two parts, one related to the energy 
through the battery circuit and the other directly to the load. 

Let 

(qAqpTp3?s3qs4) = 1 , s  

and 

(qs5qs6qB) = qd 

~~ 

*c 
q may be substituted for q depending on type of energy source control 

P S 
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then 

L 

Since Pi = AiPout, Pout = Pi/Ai 

The total power system efficiency (H) can be expressed a s  follows 

L 4 

The total power system efficiency (H) can be maximized by 

1) Increasing q,, . the power conditioning efficiency 

2) 

3) 

Increasing q d’ the battery charge-discharge efficiency 

Decreasing [(T/t) - 11, the dark-to-light ratio 

4) Decreasing 

the output stage efficiency of the power conditioning 
equipment 

5) Increasing 

equivalent to  4). 

Therefore, for each proposed power system configuration, equipment 
efficiencies can be substituted into Equation (19). 
each configuration can then be compared in magnitude. 
resulting number (closest to unity) will indicate the most efficient 
configuration. 

The resulting (H) for 
The highest 
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Summary type equations can be written for other optimization 

parameters  such a s  weight, reliability, etc. 

Optimization method provides a relative ranking of the proposed configura- 

tions fo r  any optimization cri teria.  

This Comparative Analysis 
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